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[1] A global ocean general circulation model is used to estimate the magnitude of
interannual variability in air-sea fluxes of CO2 and O2 from 1980–1998 and to examine
the controlling mechanisms. The global variability in the air-sea flux of carbon (±0.5 �
1015 grams Carbon yr�1 (PgC yr�1)) is forced by changes of DpCO2 and wind speeds
related to the El Niño/Southern Oscillation (ENSO) cycle in the equatorial Pacific. In
contrast the air-sea O2 flux is controlled by two regions: the equatorial Pacific and North
Atlantic. The model captures much of the interannual variability of the CO2 flux observed
at Bermuda, with some correlation with the North Atlantic Oscillation (NAO) index.
However, basin-scale air-sea CO2 flux anomalies are not correlated with the NAO due to
a rapid neutralization of entrained DIC anomalies by biological uptake and export
production in the subpolar gyre. CO2 flux variability estimates from our ocean model and
the mean atmospheric inversion results of Bousquet et al. [2000] are in broad agreement
in the equatorial Pacific, but not in the North Atlantic. This model suggests that the
projection of air-sea flux anomalies onto the large-scale, mean air-sea flux pattern in
atmospheric inversions may lead to an overestimate of the flux variability in the extra-
tropics where the patterns of variability do not correspond to those of the mean
flux. INDEX TERMS: 4215 Oceanography: General: Climate and interannual variability (3309); 4255

Oceanography: General: Numerical modeling; 4805 Oceanography: Biological and Chemical:

Biogeochemical cycles (1615); 4806 Oceanography: Biological and Chemical: Carbon cycling; KEYWORDS:

air-sea exchange, carbon flux, ocean modeling
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1. Introduction

[2] The increase of atmospheric CO2 is modulated by the
natural carbon cycle such that only about half of the CO2

emitted due to anthropogenic fossil fuel combustion, cement
production, and land use change resides in the atmosphere.
The remaining CO2 is taken up by the ocean due to the
solubility of CO2 in seawater and into the terrestrial bio-
sphere due to a net increase in biomass. The enormous
complexity of the terrestrial and oceanic biogeochemical
systems involved in these CO2 sinks makes them difficult to
understand and quantify. Independent estimates of sink
magnitudes and their geographical distributions, based on
inversions of atmospheric data, differ significantly and
have large error bars [Gurney et al., 2002; Francey et al.,
2001; Manning, 2001; Rayner et al., 1999a; Keeling et al.,
1996; Bender et al., 1996; P. Peylin et al., Interannual CO2

fluxes as deduced by inverse modeling of atmospheric CO2

and by models of the ocean and the land carbon cycle,
submitted to Global Biogeochemical Cycles, 2004 (herein-
after referred to as Peylin et al., submitted manuscript,
2004)]. Furthermore, observations indicate that the growth
rate of atmospheric CO2 varies on interannual timescales
significantly more than do CO2 emissions [Conway et al.,
1994]. The substantial temporal variability in CO2 sinks
indicated by these observations is also poorly understood.
Interannual variability of CO2 sinks may hold valuable
clues to the mechanisms driving these sinks.
[3] In a previous study with a global circulation and

carbon cycle model, LeQuéré et al. [2000] find that the
modeled estimate of the interannual variability in the global
air-sea carbon flux is small relative to the variability implied
by atmospheric inversions. Obata and Kitamura [2003]
report similar results based on a different ocean model. In
these models, the global variability is controlled by the
equatorial Pacific. However, the circulation model used by
LeQuéré et al. [2000] was a ‘‘robust diagnostic’’ configu-
ration in which temperature and salinity were strongly
restored to climatology beneath the surface mixed layer.
This may have reduced extra-tropical variability by damp-
ing changes in mode water formation rates, for example. In
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addition, our previous work with a regional North Atlantic
oxygen cycle model [McKinley et al., 2000], and a more
detailed analysis of the oxygen fluxes in the global model
described here [McKinley et al., 2003], show a significant
role for the North Atlantic in modulating the air-sea oxygen
flux on annual timescales. Could this region also be
significant in terms of carbon fluxes? In a recent study,
Gruber et al. [2002] extrapolate the air-sea carbon flux
variability at Bermuda over the North Atlantic basin and
suggest that this region should play a significant role
globally. The Atlantic is certainly important to the net global
CO2 uptake into the ocean, estimated by Takahashi et al.
[2002] to be 40% of the global anthropogenic total, despite
only occupying 24% of the area of the global ocean.
[4] In this study, we seek to understand and quantify

mechanisms of interannual variability of the ocean CO2 sink
using a biogeochemical oceanmodel driven by state of the art
ocean circulation state estimates which do not use the robust
diagnostic formulation. We focus on the mechanisms of
variability in the equatorial Pacific, which dominates the
global flux variability of CO2. We examine in detail the
fluxes and mechanisms in the North Atlantic in the light of
our previous oxygen studies [McKinley et al., 2000, 2003]
and those of Gruber et al. [2002] and Bousquet et al. [2000],
focusing on the importance of the Atlantic to global variabil-
ity. We investigate the potential implications of the spatial
structure of the CO2 flux variability in our model on atmo-
spheric inversion estimates of the ocean CO2 sink variability.
[5] This paper is organized as follows. In section 2, we

describe the ocean biogeochemical model. In section 3, we
describe the global scale interannual variability of the
model and the relative contributions from each of the ocean
basins. In section 4, we focus on the mechanisms at play in
the equatorial Pacific and North Atlantic. In section 5, we
summarize and conclude.

2. Biogeochemical Ocean Model

[6] The offline biogeochemical model is based upon the
MIT Ocean General Circulation Model [Marshall et al.,
1997a, 1997b]. An offline model is a tracer-only model for
which all mean and time-varying physical properties (ad-
vection, temperature, etc.) are pre-computed, archived
fields. Physical model results are from a simulation made
at the Jet Propulsion Laboratory, covering the period 1980–
1998 [Lee et al., 2002]. Horizontal resolution is 1� in
longitude, 1� in latitude at high latitudes and telescoping
to 0.3� in the tropics. The circulation model has 47 vertical
levels, with 10-m resolution between the surface and 150 m.
The Gent-McWilliams [Gent and McWilliams, 1990] eddy
parameterization and the KPP boundary layer mixing
scheme [Large et al., 1994] are used to represent subgrids-
cale processes. The general circulation model is forced with
12-hourly reanalyzed wind stress, heat, and freshwater
fluxes. Sea surface temperature (SST) is relaxed to the
National Centers for Environmental Prediction (NCEP)
[Kalnay et al., 1996] reanalysis with a timescale dependent
on the deviation from the reanalysis. Similarly, sea surface
salinity (SSS) is relaxed to the climatology of Conkright
et al. [1998]. Ten-day average advective fields, Gent-

McWilliams tensors and background diffusion, KPP mixing
coefficients, and temperature and salinity fields are used to
drive the offline model.
[7] In Figure 1, model mixed layer depths are compared

to observations at the Bermuda Atlantic Time series Station
(BATS) and at the Hawaii Ocean Time series (HOT) for the
period 1989–1998 [Bates, 2001; Karl and Lukas, 1996]. At
BATS, the modeled mixed layer depth is consistent with the
observed seasonal cycle, though it is somewhat too deep in
winter. The model captures the magnitude of mixed layer
depth variability as well as a good portion of the detailed
features. While the overestimate of winter deep mixing
and some lack of correspondence of the variability could
significantly impact productivity and CO2 fluxes [Bates,
2001], we show in section 3.2 that CO2 flux variability is
actually quite well captured at BATS. At HOT, the seasonal
cycle of the mixed layer is well captured by the model. In
both the observations and the model, the seasonal and
interannual variability at HOT is much smaller than at
BATS. The model underestimates the interannual variability
at HOT.
[8] To evaluate the model’s representation of observed

physical variability on the larger scale, we compare zonally
averaged model SST variance to the Reynolds and Smith
[1994] climatology in Figure 2. The model captures the
magnitude of the SST variance together with all the major
observed features. This is particularly significant for the
consideration of air-sea CO2 fluxes because SST is a major
driver of the pCO2 seasonal cycle across much of the global
oceans [Takahashi et al., 2002], and therefore is likely to be
important to its interannual variability. The model’s over-
representation of the SST variance in the North Atlantic
between 40�N and 60�N is because the modeled Gulf
Stream is too broad.
[9] Analysis of the physical model indicates that it

captures approximately 35% of the TOPEX/Poseidon ob-
served sea surface height (SSH) variability [McKinley,
2002] when both the satellite data and model results are
averaged to 2� � 2� or coarser resolution. This degree of
SSH variance representation is similar to that found by
Stammer et al. [1996] in a 1/4� ocean model, indicating that
the model does quite well given its resolution.
[10] The underrepresentation of SSH and mixed layer

depth variability is due to the lack of explicitly resolved
mesoscale eddies, the boundary conditions with which the
model is forced, and the imperfect parameterizations used to
represent sub-gridscale processes. This underestimate of the
level of physical variability suggests that air-sea gas flux
variability estimates derived from the model are likely to be
lower bound estimates.
[11] The prognostic variables of the biogeochemical model

are dissolved inorganic carbon, DIC, total dissolved phos-
phorus, P and dissolved oxygen,O2. The governing equation
for DIC is

@DIC

@t
¼�r � uDICð Þ þ r � KrDICð Þ þ RC:P � Sb þ FWDIC

þ EDIC ; ð1Þ

where u is the transformed Eulerian mean velocity
(incorporating advective transport by both the mean flow
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and eddies) and r � (KrDIC) is a tensorial representation
of the sub-gridscale mixing schemes [Gent and McWilliams,
1990; Large et al., 1994] of the physical model. A third-
order upwind, flux-corrected advection scheme is used in
the offline tracer model [Dutkiewicz et al., 2001]. As
described in detail below, Sb represents both the loss of P
due to the biological formation of sinking particles and a
source of P from remineralization. Here we assume that
biological changes to DIC respond in proportion to changes
in P based on the Redfield ratio, RC:P = 117:1 [Anderson
and Sarmiento, 1994]. FWDIC represents the dilution (or
virtual fluxes) of tracers due to surface freshwater fluxes,
and EDIC denotes air-sea gas exchange. The oxygen model,
with prognostic equation similar to that for DIC above, is
described in more detail by McKinley et al. [2003].
[12] We apply an idealized parameterization of export

production limited by light and phosphate availability. All
other controlling factors are represented by a regionally
adjustable maximum export rate, a(x, y). For each layer in
the model’s euphotic zone (0–140 m), the export of
nutrients is determined by

B zð Þ ¼ �a x; yð Þ � I y; z; tð Þ
I y; z; tð Þ þ Io

� �
� P x; y; z; tð Þ

P x; y; z; tð Þ þ Po

� �
: ð2Þ

The value of the maximum export rate, a, encapsulates all
the processes leading to export which are not represented
by the explicit phosphate and light limitation. These
unresolved processes might include, for example, regional
variations in grazing efficiency, recycling, or iron limitation.
All temporal variation is assumed due to phosphate and
light variability. I(y, z, t) is the flux of photosynthetically
active radiation (PAR) at the surface and with depth in the

ocean which varies with both season and latitude. The half-
saturation constant for light (Io) is 30 W m�2 in PAR, and
for phosphate (Po) is 0.01 mmol kg�1. The sinking particle
flux (F(z)) is parameterized as a function of depth following

Figure 1. Model (thin solid line) and observed (bold solid line) mixed layer depths 1989–1998:
(a) mean cycle at BATS, (b) variability at BATS, (c) mean cycle at HOT, and (d) variability at HOT. A
mixed layer depth criteria of Dr = 0.125 kg m�3 is applied to both the monthly data and the model results
[Monterey and Levitus, 1997].

Figure 2. Model (dashed line) and observed (solid line)
zonally averaged SST variance for (a) Indian Ocean 60�E–
90�E, (b) Pacific Ocean 180�E–150�E, and (c) Atlantic
Ocean 50�W–10�W. Data and model results are averaged
over 2� � 2� boxes prior to the variance calculation.
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[Dutkiewicz et al., 2001]. Within the euphotic zone, Sb =
B(z) + F(z) and below, Sb = F(z).
[13] Similar particle export parameterizations have been

used with constant parameter values in the North Atlantic
[McKinley et al., 2000; Williams and Follows, 1998]. When
combined with various representations of light limitation,
the resulting fallout timescales are of order a week in the
summer to many years in the high latitude winter. These
models have been able to capture the major features and
annual cycles of nutrients in the North Atlantic. Maier-
Reimer [1993] has used such a model with a constant export
factor to calculate production in the HAMMOC3 global
ocean model. He finds reasonable agreement with surface
nutrient observations in most of the ocean, but significantly
overestimates new production and underestimates pCO2 in
the eastern equatorial Pacific.
[14] In order to avoid these effects, we build on the

simplified prognostic form for export production presented
in equation (2) to derive a spatially inhomogeneous a for
use in this model. Following the example of Marshall and
Molteni [1993], who determine spatially varying potential
vorticity flux forcings for a quasigeostrophic model of the
atmosphere, we solve for an a(x, y) that, given model flow
fields, will produce an annual mean phosphorous distribu-
tion consistent with climatological observations [McKinley,
2002]. The result is a spatially varying a(x, y) into which all
unknowns of the biological system are incorporated. As this
method requires a consistency of the model circulation and
climatological nutrient fields, a is adjusted only on the large
scale, over 14 basin-scale regions, where such consistency
is possible. The export timescales (t(x, y)) of the solution
for a(x, y) are broadly consistent with known controls on
export in the global ocean (Table 1). The shortest timescales
are found in the northern subtropical gyres and in the
subpolar North Atlantic. In contrast, long export timescales
in the Southern Ocean, the eastern Equatorial Pacific, and
the subpolar North Pacific are consistent with the High
Nutrient/Low Chlorophyll regions where iron limitation is
the likely control [e.g., Martin et al., 1994]. In short, the
substantial heterogeneity of a adjusts the broad regional
patterns of export production to bring the modeled nutrient
field into consistency with the observed climatology. The

resulting pattern of a is consistent with current understand-
ing of regional biogeochemistry.
[15] Air-sea gas exchange is parameterized following

Wanninkhof [1992]. The proportionality constant (a) from
Wanninkhof [1992] equation (3) is determined based on the
frequency distribution of our 12-hour winds speeds (Com-
prehensive Ocean-Atmosphere Data Set (COADS) [da Silva
et al., 1994] mean with NCEP variability, 1980–1998). We
find a = 0.39. The method of J. Boutin and J. Etcheto
(Climatology of K deduced from the satellite wind speeds,
1995, available at http://www.ipsl.jussieu.fr/OCMIP/
phase1/distrib/README.satdat) is used to determine a
10-day average squared wind speed product for use in the
model that fully accounts for 12-hourly wind speed vari-
ability (�u10

2 + su10
2 , where u10 is the wind speed at 10 m).

Since here we are primarily interested in the response of air-
sea gas exchange to changing physical forcing, a constant
atmospheric pCO2 of 354 ppm is applied; a mean value
observed in 1990 at Mauna Loa [Keeling and Whorf, 2000].
Likewise, a constant atmospheric pO2 of 20.946 pph is
applied. Seasonal variation of atmospheric pCO2 is not
considered and so there is potential for flux bias, particu-
larly at high latitudes where seasonal variability can be as
large as 10 ppm. Surface ocean pCO2 is determined from
the local DIC concentration, alkalinity, temperature, salinity,
and borate concentration as given by Follows et al. [1996].
Alkalinity is assumed to be a linear function of salinity
based on GEOSECS data after Campbell [1983]. Borate
equilibrium is determined following Takahashi et al.
[1981], with a globally constant dissolved inorganic boron
concentration of 409 mmol/kg.
[16] Net freshwater fluxes to the surface layer are used to

drive a dilution, or virtual flux, of tracers. Fluxes are a
combination of the model forcing (COADS mean with
NCEP variability) and the virtual fluxes due to sea surface
salinity relaxation from the physical model. We apply
climatological monthly ice coverage maps as used in the
Ocean Carbon-Cycle Model Intercomparison Project (J. Orr
et al., Ocean Carbon-Cycle Model Intercomparison Project
2: Abiotic-HOWTO, 2002 (available at http://www.ipsl.
jussieu.fr/OCMIP/)) [Dutay et al., 2002]. Both gas
exchange and export production are reduced proportional

Table 1. Ocean Regions, Boundaries, Maximum Export Rate (a), and Export Timescalea

Region Boundaries a, 10�8 mmol kg�1 s�1 t, Years

Southern Ocean 80�S–55�S 4.6 1.3
Subantarctic 55�S–35�S 4.3 0.73
South Indian 35�S–15�S, 22�E–140�E 0.25 3.2
North Indian 15�S–26�N, 38�E–108�E 1.2 1.8
Subtropical South Pacific 35�S–15�S, 145�E–295�E 0.76 1.2
Subtropical South Atlantic 35�S–15�S, 295�E–22�E 1.4 0.86
Eastern equatorial Pacific 15�S–15�N, 200�E–283�E 1.8 1.4
Western equatorial Pacific 15�S–15�N, 109�E–200�E 2.3 0.65
Equatorial Atlantic 15�S–15�N, 284�E–25�E 1.1 1.6
Subtropical North Pacific 15�N–44�N, 105�E–267�E 2.2 0.54
Subtropical North Atlantic 15�N–44�N, 267�E–354�E 2.6 0.23
Subpolar North Pacific 45�N–79�N, 115�E–240�E 2.4 2.1
Subpolar North Atlantic 45�N–79�N, 266�E–20�E 77.2 0.03
Mediterranean 30�N–44�N, 355�E–38�E 10.3 0.04

aExport timescale t is calculated from a and the mean phosphate over the specified region [Conkright et al., 1998].
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to the amount of ice cover once the cover is greater than
20%. Nutrients and oxygen distributions are initialized from
the climatology of Conkright et al. [1998] and DIC from the
climatology of Goyet et al. [2000].
[17] The offline biogeochemical model is run only in the

upper ocean (0–1265 m), and relaxation to the initialization
climatologies occurs in the bottom three layers (965–
1265 m). The assertion by LeQuéré et al. [2003] that this
configuration applies to our physical simulation is incorrect:
The physical model is run prognostically throughout the
ocean. The annual climatology of the 19 years (1980–1998)
of model physical fields is used to force the model during a
21-year spinup and then one time through the fields for
1980. The model is then restarted at 1980 and driven
through the 19-year, time-varying circulation fields with a
2-hour time step. This spinup ‘‘flushes’’ the initial condition
from the ventilated thermocline. While there is some quan-
titative effect of shifting from climatology to 1980 and then
restarting at 1980, analysis shows that this does not change
the qualitative result and is insignificant after 2 or 3 years.

3. Modeled Carbon Fluxes and Variability

3.1. Comparison to Mean Flux Estimate of Takahashi
et al. [2002]

[18] In Figure 3a we depict the 1980–1998 mean air-sea
CO2 flux from the model, with positive fluxes to the

atmosphere. The regional patterns compare well to the
‘‘climatological’’ observations of Takahashi et al. [2002].
There is net outgassing of CO2 to the atmosphere across the
equatorial Pacific due to wind-driven divergence and
upwelling. Other regions of the tropics also act as small
net sources of CO2 to the atmosphere. The subtropics are
generally small net CO2 sinks, and carbon is taken up by the
oceans in the high northern latitudes, along the western
boundary currents and in the subpolar North Atlantic. In the
Southern Ocean, CO2 enters the model ocean through
the cooling of the poleward flowing Agulhas current at the
southern tip of Africa. In Figure 3b, zonally averaged mean
CO2 fluxes are compared to the observed estimate. Zonal
average mean model fluxes compare very well to the data
estimates in all regions and for the globe. Net outgassing
occurs in the tropics, and net ingassing occurs in the middle
and high latitudes. The global mean CO2 flux of the model is
1.8 PgC yr�1 into the ocean for 1980–1998, quite close to the
corrected Takahashi et al. [2002] estimate of 1.64 PgC yr�1

for 1995 (http://www.ldeo.columbia.edu/CO2/).
[19] It is important to note two caveats that increase the

uncertainty of this comparison: (1) A constant atmospheric
pCO2 value has been used in the simulation, and (2) there is
a trend in the modeled air-sea flux of CO2 (see below).
Though the atmospheric pCO2 used in the simulation is not
varying in time, it is a mean value for the midpoint of the
simulation time period, 1990. The model is also initialized

Figure 3. (a) Mean CO2 flux (mol m�2 yr�1), and (b) zonally average comparison to the corrected
Takahashi et al. [2002] result (http://www.ldeo.columbia.edu/CO2/). Positive fluxes are to the
atmosphere.
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with a modern-age DIC climatology so that the deep waters
coming to the surface have DIC concentrations consistent
with the modern ocean. Together, these model choices
clearly place the simulation in the anthropogenic age and
give us a priori confidence in the validity of a comparison to
the observations. The high quality of the comparison shown
in Figure 3 also gives a posteriori confidence in assumptions
made during model formulation.
[20] The global air-sea flux of CO2 has a trend of

0.07 PgC yr�2 over the course of the 19-year integration, due
to the continuing adjustment of the model’s deeper waters to
surface boundary conditions [McKinley, 2002]. Given the
resolution, complexity, and computational requirements of
the model, as well as our focus on understanding interannual
variability, this relatively small drift is acceptable. However,
because it is not readily possible to separate this drift from
perhaps plausible changes in the ocean tracer budget and air-
sea fluxes, we only examine model estimates of interannual
variability in air-sea CO2 fluxes relative to the 19-year trend.
The model trend was calculated by a linear fit to the result
from which the seasonal cycle has been removed at each
point in space, and is removed on a point-by-point basis in
the results that follow.

3.2. Global Interannual Variability of Fluxes

[21] Before looking at globally and regionally integrated
air-sea flux variability, we consider comparisons of modeled
air-sea CO2 flux variability to observational estimates. At
Bermuda (BATS and Station S), we plot the model result
and the estimate from observations by Gruber et al. [2002]
(Figure 4a). The model pleasingly captures both a
substantial portion of the magnitude and many features of

the observed air-sea flux variability. The RMS variability of
the model is 0.27 mol m�2 yr�1 and that of the observations
is 0.35 mol m�2 yr�1. In Figure 4b, a similar comparison is
shown for the Hawaii station (HOT) using the observational
results of H. Brix et al. (Interannual variability of the upper
ocean carbon cycle at station ALOHA near Hawaii,
submitted to Global Biogeochemical Cycles, 2004) (herein-
after referred to as Brix et al., submitted manuscript, 2004).
The model has an RMS variability over the observational
time period of 0.18 mol m�2 yr�1, compared to 0.35 mol
m�2 yr�1 from the data up to 1998. Model RMS variability
is 0.22 mol m�2 yr�1 if the entire 1980–1998 period is
considered. Owing to restoration to climatological salinity
and model drift, it is not possible for the model to capture
the increasing pCO2 trend of the 1990s at HOT [Dore et al.,
2003]. Consistent with previous comparisons of the
physical model, these comparisons suggest that the global
and regional flux variability estimates from the model are
likely to capture many features of the real ocean’s
variability, but that the magnitude of the variability
estimated by the model is likely to be a lower bound.
Damped salinity variability and limited physical variability
due to the lack of explicit mesoscale eddies and model
boundary conditions provide some explanation for the
model’s underestimate of the observed variations, as was
discussed in section 2.
[22] The time series of interannual variability in air-sea

CO2 fluxes is presented in Figure 5a. Interannual variability
in the global air-sea CO2 flux has a maximum amplitude of
±0.5 PgC yr�1, and a RMS of 0.28 PgC yr�1. The model
estimate of the interannual variability in the global CO2 flux
is larger than the model of LeQuéré et al. [2000]. It is
similar in magnitude to that of LeQuéré et al. [2003], who
add a multicompartment ecosystem to the model of LeQuéré
et al. [2000]. Concurrent work with CO2-only [Bousquet et
al., 2000] (Figure 12a in section 4.3) and multitracer
atmospheric inversions for land and ocean CO2 sinks
[Francey et al., 2001] give smaller estimates of air-sea flux
variability of CO2 than previous efforts [Rayner et al.,
1999a] with extremes of a similar magnitude to our model
estimate. Thus we see some convergence in terms of flux
variability magnitude between models and atmospheric
inversions. However, as will be discussed in section 4.3,
the spatiotemporal distribution of this variability differs
substantially between approaches.
[23] A regional breakdown of the annual anomalies in the

CO2 flux (Figures 5b–5d) illustrates that the global flux
variability is largely driven by the equatorial Pacific be-
tween 15�S to 15�N (RMS = 0.17 PgC yr�1). The global
time series correlates with the equatorial Pacific at r = 0.85.
The dominance of the equatorial Pacific to global integrated
CO2 flux variability is consistent with previous modeling
studies [Obata and Kitamura, 2003; LeQuéré et al., 2000;
Winguth et al., 1994] but possibly at odds with independent
estimates from atmospheric inverse models which suggest a
greater role for the extra-tropics. Consistent with the
findings of Obata and Kitamura [2003], the Southern
Ocean (80�S–30�S) provides the second-largest source of
variability (RMS = 0.09 PgC yr�1). In contrast to the
suggestion of Gruber et al. [2002], the model has a small

Figure 4. Comparison of model (thin solid line) at
(a) Bermuda and (b) Hawaii to observational (bold solid
line) estimate of air-sea CO2 flux variability [Gruber et al.,
2002]; (Brix et al., submitted manuscript, 2004). Data and
model results are smoothed over 12 months. Model results
are an average of a 3� � 3� region centered on the time
series locations, so as to be more representative of the
region of interest. Positive fluxes are to the ocean.
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CO2 flux variability in the North Atlantic (RMS = 0.03 PgC
yr�1). Yet in a study of this same model [McKinley et al.,
2003] we find that the global O2 flux variability has
significant contributions both from the equatorial Pacific
and the North Atlantic basin. Hence, in the following
sections, we discuss in more detail the physical and
biogeochemical variability of this model in the equatorial
Pacific and North Atlantic and seek to understand
differences in CO2 and O2 flux variability.

4. Mechanisms and Fluxes in the Equatorial
Pacific and North Atlantic

4.1. Equatorial Pacific

[24] We use empirical orthogonal function (EOF) analysis
of model results to determine the most significant pattern of
the flux variability and to provide mechanistic clues. The
first EOF (EOF1) of the air-sea CO2 flux variability in the
Pacific explains 18% of the variance over the region
(Figure 6). In a comparable analysis of just the equatorial
Pacific (15�S–15�N), the first EOF explains 50% of the
interannual variance, with the same structure across the
equator. The EOF1 pattern in Figure 6 clearly reflects
the influence of ENSO on the air-sea flux [Feely et al.,
2002; Boutin et al., 1999; Feely et al., 1999; Chavez et al.,
1999]. The variability pattern is focused in a large region
along the equator with its center at 3�S, 135�W; around
approximately 10�S on the South American coast; and, to a
lesser degree, on the west coast of North America. The first
principle component (PC1) correlates with the Southern
Oscillation Index (SOI) at r = 0.89 (no lag), indicating
a strong influence of ENSO across the subtropical and

Figure 5. (a) Modeled global interannual variability of air-
sea CO2 fluxes, and regional breakdown for the Pacific
(solid line), Atlantic (dashed line), and Indian (dotted line)
for (b) 15�N–80�N, (c) 15�S–15�N, and (d) 80�S–15�N.
The dots in (c) are the Equatorial Pacific observations
complied by Feely et al. [1999]. Detrended model
anomalies about the 1980–1998 time average are shown.
Positive fluxes are to the atmosphere.

Figure 6. First EOF of the air-sea flux of CO2 in the
Pacific (mol m�2 yr�1).
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equatorial Pacific. When considering either PC1 or the
equatorial flux time series (Figure 5c), we do not find that
the ocean CO2 flux anomaly leads the SOI as was suggested
by Rayner et al. [1999b]. We find maximum correlations
with zero lag for the PC1 or if the flux time series lags the
SOI by 1 or 2 months (r = 0.80). Thus, while it is clear that
ENSO is the driver of equatorial Pacific CO2 flux
variability, the precise temporal relationship between the
SOI and the CO2 flux remains an open question.
[25] The analysis of Chavez et al. [1999] and the models

of LeQuéré et al. [2000] and Obata and Kitamura [2003]
find that physically forced surface DIC variability is the
major forcing for CO2 flux variability. We also find that
changes in the transport of DIC dominate the model’s pCO2

variability in the equatorial Pacific and this variability in
pCO2 drives, in turn, approximately 70% of the air-sea
carbon flux variability. Wind speed variability drives the
remaining 30% of the year-to-year flux changes in this
region of the model, consistent with analyses of observed
data [Boutin et al., 1999; Feely et al., 2002].
[26] In our model, pCO2 variability is driven through

changes in the upwelling rate and the depth of high DIC
waters in the eastern equatorial Pacific, and also through
longitudinal shifts in the western Pacific warm pool. Under
normal conditions, the equatorial Pacific thermocline shal-
lows from west to east and strong upwelling occurs due to
Ekman divergence at the equator. This supplies DIC-rich
waters to the surface, resulting in the net efflux of CO2 seen
in Figure 3a. In the El Niño phase, the thermocline in the
east is depressed by eastward propagating Kelvin waves
generated by anomalous westerly wind bursts in the western
Pacific [McPhaden et al., 1998]. This downward displace-
ment of the thermocline moves the supply of cold, high
pCO2 water farther from the surface. Slackening of the trade
winds leads to reduced Ekman divergence at the equator
during El Niño. Also, the western Pacific warm pool shifts
to the east to form a warm, low-pCO2 cap in regions that
would normally exhibit upwelling of high pCO2 waters
[Feely et al., 2002]. The combined effect of a depressed
thermocline, reduced upwelling, and longitudinal displace-
ment of the warm pool is to significantly alter the amount of
high DIC waters exposed to the atmosphere; a positive SST
anomaly and negative DpCO2 anomaly form in the
equatorial band (Figures 7a and 7b). The negative DpCO2

anomaly is the primary driver of the negative anomaly in
air-sea flux of CO2 (reduced flux of CO2 to the atmosphere)
during El Niño (Figure 7d). In the La Niña phase, the
upward slope of the thermocline to the east is enhanced,
both bringing high DIC waters closer to the surface and
increasing the efficiency of divergence-driven upwelling
along the equator, and the region of upwelling extends
further to the west [Feely et al., 2002]. This results in a
positive CO2 flux anomaly (Figure 7d).
[27] Air-sea CO2 flux is modeled as a function of the

atmosphere-ocean DpCO2 and the square of the wind speed
[Wanninkhof, 1992]. Analysis of CO2 flux variability
estimated with the model’s interannually varying wind
speed forcing and its mean seasonal cycle of DpCO2

indicates that wind variability contributes approximately
30% of the total CO2 flux variability in the equatorial

Pacific. Wind speed variability is not a significant driver of
flux variability in other ocean regions. In the equatorial
Pacific, DpCO2 and wind speed variability act in concert,
and their interannual variability is, in both cases, driven by
the ENSO cycle (Figure 7). It is interesting to note that wind
speed variability is most important in the central equatorial
Pacific, while DpCO2 variability clearly dominates the
model CO2 flux variation toward the east, consistent with
the observational studies of Boutin et al. [1999] and Feely et
al. [2002].
[28] Chavez et al. [1999] find that during a non-El Niño

period in 1995–1996, the CO2 flux from 10�S to 10�N
in the equatorial Pacific had an observed maximum of
6.0 mol m�2 yr�1, and that this drops to 0.5 mol m�2 yr�1

during the El Niño of 1997–1998. Our model gives a
maximum flux of 6.5 mol m�2 yr�1 during the same non-El
Niño period and 1.5 mol m�2 yr�1 during the same El Niño.
The modeled flux anomalies in the equatorial Pacific are
also in very good agreement with the analysis of Cosca et
al. [2003], based on in situ data and remote observations. In
brief, the modeled interannual variability of the equatorial
Pacific air-sea flux is in good agreement with previous data
studies and models both in terms of the processes at play
and the quantitative estimates.

4.2. North Atlantic

[29] The North Atlantic Oscillation (NAO) and associated
phenomena capture a significant fraction of North Atlantic
physical variability [Hurrell, 1995; Dickson et al., 1996]. In
a prior study of the O2 cycle in this model [McKinley et al.,
2003], air-sea flux variability was shown to be strongly
influenced by interannual changes in wintertime convective
mixing in the region, correlated with the NAO index. It has
also been recently postulated that there may be a similar
relationship between basin-scale air-sea CO2 flux in the
North Atlantic and the NAO index [Gruber et al., 2002] and
that the resulting fluxes could be significant for net global
variability. However, the model described here does not
support that suggestion. We find (Figure 5) that CO2 flux
variability is rather small in the North Atlantic. EOF1 for
the air-sea CO2 flux in the North Atlantic explains only 11%
of the interannual variance (Figure 8a). The pattern of EOF1
is centered in the subpolar region, capturing the regions of
deep wintertime convection in the model.
[30] Why does the model not support a significant re-

gional CO2 flux variability over the North Atlantic? The
model captures appropriate aspects of the physical variabil-
ity. The first EOF of model SST (Figure 8b) illustrates the
classic NAO tripole, and the associated time series corre-
lates with the NAO (r = 0.50). Furthermore, the modeled O2

fluxes [see McKinley et al., 2003] illustrate that there is a
biogeochemical response with a significant relationship to
the NAO index leading to substantial regional air-sea O2

flux anomalies. Yet, in contrast, PC1 of the air-sea CO2 flux
EOF1 is uncorrelated with the NAO index. Thus the model
indicates a decoupling of the air-sea CO2 flux variability
from the major driver of physical variability in the North
Atlantic and a decoupling of the CO2 and O2 fluxes.
[31] To understand what controls the CO2 flux and

its relationship to the physical forcing and oxygen, we
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diagnose the factors driving the variability in the modeled
ocean surface pCO2. Following Takahashi et al. [1993],
the effects on pCO2 of surface DIC concentration,
temperature, alkalinity, and salinity may be written in
linearized form,

dpCO2

dt
¼ dpCO2

dDIC
dDIC

dt
þ dpCO2

dT
dT

dt

þ dpCO2

dALK
dALK

dt
þ dpCO2

dS
dS

dt
: ð3Þ

[32] In Figures 9a and 9b, the components driving
changes in pCO2 in the model are plotted as a function of
location in the subpolar and subtropical gyres, respectively.
The analysis of observed data by Takahashi et al. [2002]
indicates that DIC changes largely drive the pCO2 seasonal
cycle variability in the subpolar North Atlantic, while
temperature effects dominate the cycle in the subtropics.
Consistently, our model diagnostics indicate that DIC

anomalies largely drive the model’s subpolar variability
in pCO2. (The total pCO2 variability and the DIC term
correlate at r = 0.78). Temperature anomalies act to slightly
damp DIC-driven pCO2 variability. This is to be expected,
since cooler waters are generally richer in DIC with respect
to both vertical and horizontal gradients, though we note the
effect may be exaggerated since SST variability in this
region is overestimated (Figure 2). Also consistent with the
findings of Takahashi et al. [2002], temperature variability
determines pCO2 variability (r = 0.69) in the model’s
subtropical Atlantic, while DIC anomalies generally play a
smaller role. In general, the underlying drivers of variability
in Atlantic pCO2 are qualitatively consistent with in situ
data studies.
[33] The convective supply of nutrients and export pro-

duction in the modeled North Atlantic show a clear rela-
tionship to the NAO index, consistent with observations
(primary production) at BATS [Bates, 2001] and previous
models [Williams et al., 2000]. EOF1 of the North Atlantic

Figure 7. Hovmoller diagrams of the anomalies of (a) model SST (�C), (b) DpCO2 (matm), (c) squared
wind speed model forcing ((m s�1)2), and (d) air-sea CO2 flux (mol m�2 yr�1), all averaged 5�S–5�N in
the equatorial Pacific. The strong El Niño events of 1982–1983 and 1997–1998 and the strong La Niña
event of 1988–1989 are particularly noticeable. Air-sea flux anomalies are positive to the atmosphere.
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export flux captures 17% of the interannual variance with
PC1 correlating with the NAO at r = 0.60 (not shown).
[34] In the model’s subpolar gyre, surface DIC variability

is primarily controlled by convection (Figure 10a). Export
production, responding to the concurrent changes in nutri-
ent supply, counters the convective DIC supply with
strong carbon export, and some variability in storage,
dDIC
dt

, results. Yet the air-sea flux resulting from convective
DIC anomalies is small and decoupled from the physical
forcing. In contrast, in the same model, O2 air-sea flux
variability is significant in the subpolar North Atlantic
(Figure 10b) and tightly related to the convective mixing.
Why do these gases behave so differently in the North
Atlantic?
[35] First, consider the seasonal cycles of CO2 and O2 and

their relationship to vertical transport (convection and
export production) and temperature anomalies. When sum-
mer warming occurs, biological production also occurs, and
both processes drive an efflux of O2 from the surface. In
winter, convective mixing occurs and brings low O2 waters
to the surface, and also cooling reduces surface pO2, both
driving an influx of O2 from the atmosphere. In contrast,
warm summer surface waters promote high pCO2 whereas
biological production reduces pCO2, and winter convection
exposes high pCO2 to the surface while cooling reduces
pCO2. Through this mechanism, there is a damping of
surface pCO2 anomalies and an enhancement of O2 flux
anomalies. This model indicates a similar relationship to be
partly responsible for the difference in North Atlantic gas
flux variability for CO2 and O2 on interannual timescales.
Temperature and DIC-driven pCO2 anomalies tend to be
anti-correlated across the North Atlantic, with temperature
dominating in the subtropics and DIC dominating in the
subpolar gyres (Figure 9). McKinley et al. [2003] show that
interannual variability in heat fluxes and air-sea O2 fluxes
are positively correlated across the North Atlantic. How-
ever, this mechanism is not the primary reason for the large
difference in the magnitude of the modeled CO2 and O2 flux
anomalies in the North Atlantic.

Figure 9. Components of pCO2 (matm yr�1) interannual
variabilty in (a) subpolar North Atlantic (45�N–80�N) and
(b) subtropical North Atlantic (15�N–45�N), showing dpCO2

dt
(thin solid line), dpCO2

dT
dT
dt
(dashed line), and dpCO2

dDIC
dDIC
dt

(dash-
dotted line). Each term is calculated frommodeled variability
in the forcing of interest (e.g., DIC, T, ALK, S) while other
forcings are held constant. Variability in dpCO2

dALK
dALK
dt

and dpCO2

dS
dS
dt

are small and are not shown. For clarity, time series are twice
smoothed over 12 months.

Figure 8. (a) First EOF of air-sea flux of CO2 (mol m�2 yr�1) and (b) first EOF of SST (�C) in the
North Atlantic (15�N–80�N). EOF1 of air-sea CO2 flux explains 11% of the variance; EOF1 of SST
explains 15% of the variance. Both EOFs are based on monthly data.
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[36] Our model indicates that CO2 flux anomalies are
smaller than those of O2 primarily because CO2 has a much
longer air-sea equilibration timescale. This creates a very
different balance in the surface response to DIC anomalies
than for O2 anomalies. Owing to carbonate chemistry, the
equilibration time for CO2 is approximately 20 times longer
than for O2, which does not react with seawater. Depending
on the mixed layer thickness and other factors, O2 equili-
brates within a few weeks and CO2 may take a year or more
[Broecker and Peng, 1974]. Much of the variability in the
North Atlantic is driven by interannual changes in
convective mixing which is acting on short timescales (a
few weeks) primarily at the end of each winter. Following
deep winter convection, rapid springtime biological draw-
down and export neutralizes much of the convectively
driven DIC anomaly before air-sea exchange can have a
significant impact (Figure 10a). The O2 equilibration
response via air-sea exchange, however, occurs on a
timescale comparable to, or faster than, the biological
drawdown. Rapid equilibration of O2 anomalies by the air-
sea flux means that there is little temporal change in the
surface O2 inventory (dO2

dt
). Thus CO2 and O2 fluxes exhibit

very different responses to convectively driven anomalies in
the subpolar Atlantic. The dominant oxygen balance is
between anomalies in vertical transport (convection and
biological export) and air-sea exchange; but for DIC, the
balance is primarily between the two vertical transport
terms.
[37] The slow equilibration of CO2 through gas exchange

is also important to decoupling the CO2 flux response in the
model’s subtropical gyre. The temperature term of
equation (3) has a small correlation with the NAO (r =
0.37) in the subtropics, indicating that the forcing of pCO2

anomalies is related to the NAO index via the influence of
SST [Gruber et al., 2002]. However, due to the slow
equilibration timescale for CO2, the air-sea flux resulting
from these anomalies has little relationship to the NAO.
Lateral advection and other forcings act rapidly to disperse
and eliminate anomalies before such a relationship can be
established locally. This is in strong contrast to the oxygen

fluxes which showed a clear relationship to the physical
forcing and NAO index in the subtropics [McKinley et al.,
2003].
[38] Our model suggests a decoupling of the air-sea

carbon flux from the physical forcing, NAO index, and
oxygen fluxes in the North Atlantic which is attributable to
the long air-sea equilibration timescale for CO2, and also to
anti-correlation of temperature and vertical transport (con-
vection and export production) influences on pCO2 vari-
ability. Thus it may not possible to extrapolate observed
flux variability at Bermuda over the basin as suggested by
Gruber et al. [2002]. We illustrate this in Figure 11 by
mapping the correlation of the modeled air-sea CO2 flux
variability at Bermuda with each model grid point in the
North Atlantic. There is a correlation of the flux variability
across a large region of the subtropical gyre which has a
weak association with the NAO. However, Figure 11 clearly

Figure 10. Components of (a) DIC and (b) O2 interannual variability in the subpolar North Atlantic
(45�N–80�N) in mol m�2 yr�1: dDIC

dt
, dO2

dt
(thin solid line), convection (dashed line), export production

(dash-dotted line), and air-sea flux (bold solid line). Advection and freshwater terms have little
influence on the total variability and are not shown. For clarity, time series are twice smoothed over
12 months.

Figure 11. Point correlation between modeled air-sea CO2

flux variability at Bermuda and at each point in the North
Atlantic. Negative values are indicated by the dashed lines.
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illustrates that there is no correlation of the flux variability
in the subpolar gyre or even over a large fraction of the
subtropics.

4.3. Implications for Atmospheric Inversions

[39] How does the interannual variability of the air-sea
flux of CO2 estimated by this model compare with atmo-
spheric inverse models, such as that of Bousquet et al.
[2000]? In Figure 12a we compare time series of the global
air-sea flux anomalies from the two approaches. Although
the magnitude of the flux variability is similar between the
two methods, the temporal structures are entirely different.
There is very good agreement between the methods in the
equatorial Pacific region (Figure 12b), but in the North
Atlantic (Figure 12c) the atmospheric inversion suggests
much more variability than implied by the ocean model. In
fact, Bousquet et al. [2000] find significantly greater air-sea
flux variability in all high-latitude regions than in the ocean
model (Peylin et al., submitted manuscript, 2004). In the
inversion, the temporal structure of the global time series is

dominated by the high latitudes, while our ocean model,
consistent with the studies of Obata and Kitamura [2003],
LeQuéré et al. [2000] and Winguth et al. [1994], indicates
that the equatorial Pacific dominates the global budget
(Figure 5).
[40] We note that if the range of the seven inversions

performed by Bousquet et al. [2000] is taken as an
uncertainty, our ocean model result is only distinguishable
from the inversion in the North Atlantic for a few short
periods of time (Figure 12c), particularly after 1985, when
the inversion benefits from more data and is considered by
the authors to be more reliable (Peylin et al., submitted
manuscript, 2004). Thus it is possible that the uncertainty in
the inversion (and, of course, in the ocean model) may be
simply too large for conclusions to be drawn. However, for
the sake of this discussion, we will assume that the mean of
the seven inversion runs provides evidence for an apprecia-
ble difference from the ocean models.
[41] Why might it be that there is such a difference

between estimates of air-sea CO2 flux variability from the
two methods in the North Atlantic, while at the same time
agreement is extremely good in the equatorial Pacific?
Damped physical variability in the ocean models is likely
part of the answer (Peylin et al., submitted manuscript,
2004). Indeed, our model does under-represent sea surface
height variability [McKinley, 2002] and captures much, but
not all, of the mixed layer depth variability at Bermuda and
Hawaii (Figure 1). However, SST variability comparisons
(Figure 2) indicate that the degree of physical variability
captured by the model is no different at high latitudes than
in the tropics. The model also captures much of the
observed air-sea CO2 flux variability at Bermuda and
Hawaii (Figure 4), indicating good subtropical performance.
An additional factor might be the highly idealized
parameterization of biological processes in the ocean model,
which could lead to unrealistic balances and fluxes.
However, the recent study of LeQuéré et al. [2003] does
not support this explanation.
[42] In addition, assumptions in the atmospheric inver-

sions may also lead to errors in the flux estimates. Atmo-
spheric inversions have difficulty discriminating between
land and ocean regions at similar latitudes due to rapid zonal
mixing in the atmosphere. Further, we postulate that they
may be biased to overestimate high-latitude air-sea flux
variability by assuming that variability in CO2 fluxes is
driven by modulation of the amplitude of monthly mean
fluxes [Takahashi et al., 1997] across large regions of the
ocean. Our ocean model indicates that while this assump-
tion may be appropriate in the equatorial Pacific, it is not
applicable to the North Atlantic (or other extratropical
regions). We find that a very large portion (50%) of the CO2

flux variability in the equatorial Pacific between 15�S and
15�N is associated with a pattern (EOF1) that reflects both
the mean air-sea flux and monthly flux patterns. ENSO
drives physical changes across the whole of the equatorial
Pacific, and does so on timescales long enough for a
significant air-sea flux anomaly to occur. In contrast,
variability in the North Atlantic does not occur with
significant basin-scale coherence: EOF1 captures only 11%
of the interannual variability in this region (Figure 8a). The

Figure 12. Comparison of our modeled (solid line)
integrated air-sea CO2 flux anomalies and those from the
atmospheric inversion of Bousquet et al. [2000] (dashed
lines with gray bands that are the range from seven
inversions) for (a) the global air-sea flux variability, (b) the
equatorial Pacific, and (c) the North Atlantic, in PgC yr�1.
Detrended model anomalies about the 1980–1998 time
mean are shown.
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spatial pattern of the flux variability is dominated by brief,
small-scale convective anomalies that have little coherence
from year to year. The potential flux variability driven by
these anomalies is damped primarily by export production
that occurs on timescales faster than the air-sea exchange of
CO2 (Figure 10a).
[43] Kaminski et al. [2001] show that the aggregation of

fluxes from the resolution of a transport model to fixed
patterns over large spatial areas can cause significant errors
in atmospheric inversions for the seasonal cycle of CO2

sources and sinks. They show these ‘‘aggregation errors’’ to
be of comparable magnitude to the fluxes of interest. In
some cases, spatially non-uniform a priori estimates can
increase aggregation errors, while in other cases the non-
uniform a priori basis function can significantly reduce the
aggregation error. With models and observation, we have
shown that the a priori spatial pattern used to calculate the
basis functions in the work of Bousquet et al. [2000] in the
equatorial Pacific is likely to be a reasonable representation
of the true flux variability pattern, and thus it is likely to
improve the inversion. At the same time, our model
suggests that the a priori patterns used in the North Atlantic
may not be consistent with the true variability, and thus
aggregation errors may be aggravated in this region.
[44] If sufficient atmospheric data were available, the use

of smaller regions in the high latitudes might lead to smaller
estimates of high-latitude CO2 flux variability in the inver-
sions and increased agreement between the ocean models
and the atmospheric inversions [Kaminski et al., 2001;
Rodenbeck et al., 2003]. Additionally, now that ocean
model estimates of CO2 flux variability are able to capture a
great deal of the observed local CO2 flux variability
(Figure 4), it is possible that interannual CO2 flux inversions
may be improved by projecting onto patterns of CO2 flux
variability from an ocean model (with appropriate un-
certainties), instead of the climatological flux patterns.

5. Conclusions

[45] For the period 1980-1998, our ocean model suggests
peak-to-peak global air-sea CO2 flux variability of ±0.5 PgC
yr�1 (RMS = 0.28 PgC yr�1). Physical variability in the
equatorial Pacific associated with ENSO is the primary
driver of global air-sea CO2 flux variability. Changes in
the slope of the thermocline across the equatorial Pacific, in
the efficiency of upwelling, and in the longitudinal dis-
placement of the western Pacific warm pool significantly
alter the supply of DIC to the surface over a large ocean
area. The resulting pCO2 variability combines with ENSO-
related wind speed variations, and a substantial air-sea flux
variability results. In the North Atlantic, air-sea CO2 flux
variability is small. Biogenic export counters flux tenden-
cies created by variability in convection driven in part by
the NAO. Slow CO2 equilibration via gas exchange allows
the seasonal and interannual CO2 flux balance to be
between convection and export, which results in little CO2

air-sea flux variability from this region. This is in strong
contrast to the balances for O2 which has a much shorter air-
sea equilibration timescale. Furthermore, our model indi-
cates that while flux variability at Bermuda may provide

some information about a substantial portion of the sub-
tropical gyre, it is not a good predictor of basin-scale air-sea
CO2 flux variability.
[46] Ocean model estimates of air-sea CO2 flux variability

compare well to the atmospheric inversion of Bousquet et
al. [2000] in the equatorial Pacific, but do not agree with the
inversion result in the North Atlantic. Drawing on the
model’s illustration of substantial large-scale spatial coher-
ence of the flux variability in the equatorial Pacific and a
lack of coherence in the North Atlantic, we speculate that a
priori assumptions about the geographic patterns of the flux
variability may be responsible for biasing the atmospheric
inversions toward over-representation of high-latitude air-
sea CO2 flux variability.
[47] In order to improve our knowledge of the mechanisms

discussed here, the impact of ocean physical variability on
biogeochemical variability must be better understood. This
requires better models and also substantially more data.
High-latitude ocean time series stations, particularly in the
subpolar North Atlantic, and an increased network for
measurements of atmospheric CO2 and other gases are key
to our improved understanding of global and regional air-sea
CO2 flux variability.
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